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Abstract-The antiplane deformation of an isotropic wedge with finite radius is studied in this
paper. Depending upon the boundary data prescribed on the circular segment of the wedge, traction
or displacement, two problems are analysed. In each problem three different cases of boundary
conditions on the radial edges are considered. The radial boundary data are: traction-displacement,
displacement-displacement and traction-traction. The solution of governing differential equations
is accomplished by means of finite Mellin transforms. The closed form solutions are obtained for
displacement and stress fields in the entire domain. The geometric singularities of stress fields are
identical to those cited in the literature. However, in displacement-displacement case under certain
representation of boundary condition, another type of singularity has been observed. Copyright T~

1996 Elsevier Science Ltd

INTRODUCTION

The stress analysis in a wedge with infinite radius has been considered by various inves
tigators. Tranter (1948), by employing Airy stress function and using the Mellin transform,
solved the plane elasticity problem of an infinite isotropic wedge. Then, Williams (1952)
studied the stress singularities at the wedge apex by using the eigen-function expansion
method. Later on, Dempsey and Sinclair (1979), examined the stress singularity at the
wedge apex under different loading conditions. In a series of papers, Dempsey (1981) and
Ting (1984) and (1985) discussed the paradox which existed in the elementary solution of
an elastic wedge. Ting in his work (1985) considered an expansion form of the harmonic
eigen-functions and then, by applying the boundary conditions, obtained the coefficients
of this expansion.

The analysis of a wedge with finite radius under antiplane deformation is the subject
of the present investigation. Two problems related to the type of boundary data on the
circular portion of the boundary are studied. The traction free and fixed displacement
conditions are imposed on the arc for problems 1 and II, respectively. The boundary
conditions on the radial edges of the wedge in these problems are: displacement-traction,
displacement-displacement and traction-traction. The tractions are assumed to act con
centrically which allows the solutions to be used as the Green's function for the analysis of
a wedge under general distribution of traction. The solution is accomplished by employing
the finite Mellin transforms. The full field solution is obtained for displacement and stresses.
In all cases, the orders of stress singularity due to wedge geometry are in agreement with
the published results in the literature. However, in the displacement-displacement case,
depending upon the applied displacement, a new type of stress singularity has been detected
on the wedge apex. It is shown, as it was expected, that in the special case of a wedge with
infinite radius, the results of the two problems become identical.
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B

ex.

Fig. I. Schematic view of a finite wedge with radius a and wedge angle ~.

FORMULATION AND PROBLEM SOLUTION

A wedge with radius a, apex angle ct. and infinite length in the direction perpendicular
to the plane of the wedge is considered as shown in Fig. I. The condition of antiplane shear
deformation is imposed on the wedge. This implies that the only non-zero displacement
component be the out of plane component, W, which is a function of in-plane coordinates
rand B. Therefore, the non-vanishing stress components are !ro(r, B) and !oz(r, B). The
constitutive equations for isotropic materials undergoing antiplane deformation reduce to

(1)

where J.l designates the material shear modulus. In the absence of body forces, by making
use of (1), the equilibrium equation in terms of displacement appears as

(2)

One piece of boundary data prevailing in all the cases treated in problem I, i.e., cases la, Ib
and Ic is the traction free condition on the circular segment of the wedge circumference

(3)

In problem II, i.e., cases lIa, lIb and IIc, the wedge is fixed on the circular segment of the
boundary. Thus

W(a,B) = o. (4)

The solution to the Laplace's eqn (2) for a finite wedge may be accomplished by means of
the finite Mellin transforms. The finite Mellin transform of first and second kinds are
defined, respectively (Sneddon, 1972) as

MdW(r,B),S] = Wf(S,B) = J: C~:SI -rS-I)W(r,B)dr

M 2 [W(r,B),S] = WnS, B) = J: C~:SI +rs-1)W(r,B)dr (5)

where S is a complex transform parameter. The inversions of these transforms are rep
resented by
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(-l)j fC
+

iCO

M;l[Wj(S,B),r] = W(r,B)=~ C-ix r-SWj(S,B)dS (j= 1,2).
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(6)

The above formula for j = I differs from that of corresponding Sneddon's equation in a
sign. It is an easy task to verify (6). The application of Mellin transform of first kind in
conjunction with integration by parts on (2) yields

provided that

- [ 0" " 5 aW(r, B) os 5 ,. lhm (a-dr-J-r')r ~ +S(a"r-'+rJ)W(r,B) =0.
,~o or

Similarly, employing the Mellin transform of second kind on (2), leads to

provided that

- I

l
0'- 5 ,. aW(r,B) 25 S' 5 lhm (a"Ur-'+r")r--~-+S(a'r-'-r')W(r,B) =0.

r.-...+O or

(7)

(8)

(9)

(10)

The conditions expressed by (8) and (l0) specify the strip of regularity which is the range
of proper values for the real quantity C in the inversion formulas (6). Applying the boundary
condition (4) on (7), and the boundary data (3) with the aid of the first of (1) on (9) lead
to the following equation for both problems

The solution to this equation is readily known to be

Wj(S, B) = A,(S) sin (SB) +B/S) cos (SB) (j = 1,2).

(11 )

(12)

In the following two problems the boundary data on the radial edges are enforced to
compute the unknown coefficients in (12). The values ofj are 2 and 1 in problems I and II,
respectively.

PROBLEM I

Depending upon the prescribed conditions on the boundary segments OA and OB in
Fig. 1, three different cases of traction-displacement, displacement-displacement and trac
tion-traction may be recognized in each problem. These cases for Problem I are analyzed
separately in this section,

Case la-traction-displacement
Let the wedge be fixed on the boundary OA and subjected to antiplane shear traction

on the edge OB. Therefore, the following boundary conditions may be considered
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TOz(r,a) = PO(r-h) 0 < h < a

W(r,O) = 0 (13)

where 6 denotes the Dirac-Delta function. It is worth mentioning that the choice of the first
of boundary data (13), leads to the Green's function solution for the problem. The Mellin
transform of second kind of the second boundary data (13) gives the first equation for
determination of the unknown coefficients in (12). The second equation may be obtained
by substituting the first of boundary data (13) into the second of (1) and taking the Mellin
transform of the second kind of the resultant equation. The transformed displacement,
then, appears as

P sin (S8) '5 ,- ,-
Wt(S.8) = - (a" h-u+lt').
". /l S cos (Sa)

Making use of (6) with) = 2, the inversion of (14) results in

P fC+iXc sin (S8) , -
W(r,8) = - . (a-sh- s +hS)r- Sds.

2n/l1 c. ioo S cos (Sa)

(14)

(15)

To obtain the displacement field, contour integration may be used. The integrand is a
meromorphic function in S, and two different regions of r ~ hand r ~ h should be
considered. From condition (10) and the requirement that the expression for strain energy
ought to be integrable in the vicinity of wedge apex, the strip of regularity for r ~ h becomes
ICI < n/2a. We complete the contour of integration by a semi-circular arc to include the
negative part of the real axis, Re(S) < 0, where Re stands for the real part of the complex
argument. Since the integrand vanishes as lSI -+ 00, by utilizing the residue theorem, we
obtain the displacement field

P"' k 2 [ (h)12K;l
l
n

l

(r)12k;,1
1
n. ((2k+ l)n8)

W(r,8)=Pk~o(-I) (2k+l)n 1+ ~ It sm 2a

By virtue of (1) and (16), stress components read as

r ~ h.

(16)

8)
_~ ~ _ k[ (~)(2k:l)nl(~)((2k;xl)"-I) ((2k+l)n8)

ToAr, - I L.. ( 1) 1+ h cos 2
1a k~ 0 a a

r~h

r~h. (17)

In the region r ~ h the integration of each term of (15) should be done individually.
The continuity of displacement across the arc r = h requires that the strip of regularity be
the same as for r ~ h. For integrating the first and second terms, we close the path
of integration by semi-circular arcs to cover the half-planes Re(S) < 0 and Re(S) > 0,
respectively. Consequently, the integrands vanish as lSI -+ 00. Making use of the residue
theorem leads to
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px k 2 [ (r)(2k:llnJ(h)(2k;~I)n. (2k+ nn8)
W(r,8)=j;k~o(-I) (2k+l)n 1+; ~ sm 21X r ~ h.
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(18)

Plugging (18) into the constitutive relationships (I) the stress components are determined

o p ~ k[ (r){2k:l
l
n](h)(t2k;,lln+ I). (2k+l)n8)

!rz(r, u) = - L. (- I) 1- - - sm
hlX k ~ 0 a I' 21X

() P ~ k[ (r)(2k: IIR](h)({2k;,1 1
n+ I) (2k+l)n8)

!oz(r,o) =-h L. (-I) 1+ - - cos 2
IXk~O a r IX

r~h. (19)

Equations (16)-(19) show that the series solutions for displacement and stress com
ponent !rz are divergent at the point of application of traction. Moreover the value of !rz is
discontinuous on the arc I' = h. From (17), it is observed that the stress fields are bounded
in a wedge with 0 < ,I. < n12, whereas in a wedge with nl2 < IX < 2n, we have

and the strength of geometric singularity

. n
A= 1-

21X

which is in accord with the investigation of Ma and Hour (1989). Furthermore, for IX = n
and IX = 2n the strength of singularities becomes 1/2 and 3/4, respectively. These are exactly
the same stress singularities obtained by Ting (1986) in wedges with the foregoing apex
angles but undergoing in-plane loading conditions. We may also mention that due to the
symmetry, the analysis of a circular isotropic shaft with a radial crack under anti-plane
shear traction on the crack flanks reduces to this case where the apex angle IX = n.

In the particular case of a wedge with infinite radius, the displacement and stress fields
can be obtained by letting a -> CIJ in (16)-(19). For the sake of brevity, only the displacement
component is indicated

(2k+ 1In

lJ) p x k 2 (r)~. (2k+ l)n8)W(r, c = - (-1) - smJ1k~{] (2k+l)n h 21X

(2k+ lIn

o p x k 2 (h)~ (2k+ l)n8)W(r,u)=-(-I) - sinJ1k~{] (2k+l)n I' 21X
(20)

Case Ib-displacement-displacement
We consider a wedge fixed on the boundary OA and subjected to antiplane deformation

on the edge OB, Fig. 1. Thus the boundary conditions for (12) may have the following
form

W(r,8) = 0

W(r, IX) = r" n > 0 (21)

where n is a real constant. It is noteworthy to indicate that in general any displacement
boundary data on the edge OB may be represented by its Taylor series expansion at r = O.
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The second boundary condition (21) is the general form of a term of such series. From the
boundary data (21) and the second of (5), the coefficients in (12) are determined. The
transformed displacement reduces to

2na"+s sin (SO)
W~(S, 0) = -,-- . (S)'

n"-S2 Sill a

Using the inversion formula (6), yields

2nd' f(,'+iJ~ (a)S sin (SO)
W(r,O) = --:- -, 7 ds.

2m C-IW r (nL-S~)sin(Sa)

(22)

(23)

From the limit condition (10), the strip of regularity is Max( -n/a, -n) < C < Min(n/a,n)
and the path of integration is chosen to contain the second and third quadrants of complex
S-plane. In a wedge with angle a i= mn/n where m is a positive integer, all the singularities
of the integrand in (23) are simple poles and the displacement may be derived by utilizing
the residue theorem

W(r, 0) = 2nd' (24)

By virtue of (I), stress fields are obtained as

I sin (nO) ~ k+ I kn, (r)~ _I sin (~)
2 ,in (no) +,,,", (-1) a' ~ n' ~ (k:)'

kn

(
r)"-l cos (nO) ~ k+ I kn (~)--;;--- +L..(-I) -
a 2 sin (na) k~ 1 a2 a

(
knO\

cos -)
I a

. (25)

From (25) on the arc segment r = a, we have

sin (_knO)
sin (nO) ~ k+ I kn a,---+ L.. (--I) -----

2sin(na) k~l a
2(' k'2 n 2)

n"---
a2

(26)

The satisfaction of traction free condition on r = a is not apparent from (26). In order to
verify this condition, it suffices to expand sin (nO) in the first term of (26) by a Fourier sine
series with period 2n (Spiegel, 1968)
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2 'Z k kITO
sin (nO) = - sin (n:z) L (_I)k sin~.

IT k~1 k 2 _(:y :z

l19

(27)

Substitution of above equality into (26) reproduces the boundary condItion (3).
The first terms of stress solutions (25) are singular as r ---> 0 where 0 < n < 1. This type

of singularity is induced by the severity of applied displacement on the boundary B = :z
near the wedge apex and may be regarded as load singularity. The first terms of the series
parts of solutions in (25) are singular at the apex, where a. > IT and the strength of geometric
singularity may be calculated from the following relationship

, IT
A=l--.

a.

Clearly the displacement and stress fields (24) and (25) become unbounded in the
whole region as 'Y. ---> mIT/no The integrand in (23) has a double pole at S = -mn/a. and the
other singularities are simple poles. Nonetheless, the previous path of integration is still
applicable. Carrying ont the contour integration, the displacement is determined

[
(_I)(IX/RI+I(r)"[( (a) 1) 1

W(r,O) = 2nan 2na. ~ In -;: + 2n sin (nO) - 0 cos (nB)

. (kITO)]
+ f (- 1)k+ I (~)~ sm \ --;-

k~ I rx. a n2_ (krx.IT )2
k¥m o

The stress components from (1) result in

(28)

2nan~ I

roAr,O) = --11
!J.

r
(_I)"xin (r)n~ I [( (r) 1 ) ]
~i- ~ In ~ + 2n sin (nO) +0 cos (nO)

l

1(_I)"'in(r)"~I[( (r) I) ]l--2- ~ In ~ + 2n cos(nO)-Bsin(nO)

( kITO') ]
00 (_1)k+ 11m (r\~ ~ I co.S --;-

+I-~- -
k ~ I ex a) :' (kn)2n - -

rx. k"'m'

(29)
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Level Srz

G 3.53
F 3.29

E 3.06
D 2.82
C 2.59

B 2.35

A 2.12
9 ~ .88

8 1.65
7 1.41
6 1.18
5 0.94
4 0.71

3 0.47

2 0.24
1 0.00

M. H. Kargarnovin et at.

Fig. 2. Contours of nondimensionalized shear stress r,c!Jl.

For n < I, the first terms of (29) have a singularity of the order (r(n- I) In r) as r -> 0
which is caused by the applied boundary data. Dempsey and Sinclair (1979) reported this
type of singularity for a composite wedge under in-plane loading. Furthermore, when n = 1,
stress components (29) exhibit logarithmic singularity. Sinclair (1980) predicted this type
of behaviour for the temperature field at the apex of a composite wedge in the steady-state
heat conduction problem. For m of- I, the series parts of (29) become singular as r -> 0 and
the strength ofgeometric singularity is identical with that of (25). When m = I the geometric
singularity vanishes. In order to verify the satisfaction of boundary data (3), utilizing the
first of (29), the nondimensionalized stress contours Tr~/P are plotted for a wedge with
!Y. = n/4 under displacement boundary data W(r, n/4) = r\ Fig. 2. As we may observe,
Trz (a, 8) vanishes. For any other values of!Y. and n which satisfy !Y. = mn/n, by plotting the
stress contours Tr) p, the foregoing conclusion may be reached.

Case Ic-traction-traction
Let the wedge be subjected to antiplane shear tractions on boundary segments OA and

OB, Fig. I. The boundary conditions are considered as

TII~(r, 0) = PfJ(r-h 2 )

Toz(r,x) = n(r-hl)' (30)

Without loss of generality, we assume that hi :::; h2 . Taking the Mellin transform of second
kind of the second of egns (I), we deduce that

(31)

Applying the boundary conditions (30) to (31), we arrive at



Analysis of isotropic finite wedge

dW!(S,O) _ ~ 2sh-s hS )
de - fl (a 2 + 2

d W!(S, 0:) P 2S -S S
d8 = pea hi +h,)
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(32)

From (32) the coefficients in (12) with j = 2, may be calculated and the Mellin transform
of displacement is

W!(S, 8) = ; {(a2Sh2~ +hD sin (S8)

(33)

Eliminating the analytic terms in (33) (analytic terms have no contribution in the contour
integration) and using inversion formula (6), we have

P fC
-

iX
• ,. 'S ,. S' os _ S S' cos (S8)

W(r,8) ='-'. r-"[(a·h2"+h2)COS(So:)-(a~hi' +h l )]. dS.
2nlfl C-i'i

c
S Slll (So:)

(34)

In the region r ~ hi from the limit condition (10), the strip of regularity becomes
- n!o: < C < O. The appropriate contour of integration is a semicircular arc which engulfs
the second and third quadrants ofcomplex S-plane. The result ofcontour integration yields

r ~ hi' (35)

The stress fields are determined from (I)

In order to carry out the integrations in (34) for the regions hi ~ r ~ h2 and r ~ h2,
depending upon the terms under consideration, the contour of integration should contain
either the first and fourth or the second and third quadrants of the complex S-plane. The
choice of contour is subjected to the requirement that the integrand should approach zero
as lSI -400. The continuity of displacement across the arcs r = hi and r = h2, implies that
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the strip of regularity is 0 < C < nlrJ. for the former contour whereas it is - nlrJ. < C < 0
for the latter one. The results of contour integration may be written as

W(r,8) = _!:, f --'- [C-Il+I(~)~ (~)~+(!..-)~(I+(h2)2~][)
J1 k~ I kn a \ a h2 a

+(-I)k+l(~I)~JeosC:8) hi ~r~h2

p~ I [(r)~[ k+l(hl)~ (h2)~lWCr,8) = - - L. --- ( - I) -- +-
J1 k~ I kn a a a--,

k+l (hl)~ (h2)~J (kn8)+(- 1) - + - cos-
r r rJ.,

Substitution of (37) into the constitutive eqns (I) gives the stress fields

k+1 (hl)~+IJ . (kn8)+C-I) - sm -
r rJ.

(37)

T,Ar, 8) = ~ I [c _I)k(~)~-l (~)~+l _(~) (~)~-l (h 2 )kn; I + (~)~+I
hlrJ.k~1 \a; a /12 a a r

+(~JCr2)~+1}os(k:8) r~h2

(h\(h )~+IJ (k 8)+ h~) -;- a _ sin : r ~ h2 (38)

In the particular case of hi = hb the line 8 = rJ./2 is the line of symmetry. Consequently,
W(r, rJ.j2) = 0, and we may observe that the solutions (35)-(38) are in agreement with those
of a wedge under traction-displacement boundary condition, case la, with apex angIe half
of the wedge considered here.

Analogous to the traction-displacement case, the series solutions for displacement and
stress field, Trz, are divergent at the points of application of tractions. Furthermore, T,z is
discontinuous on the arcs r = hi and r = h2. From (36) the stress components T,z and Tez
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are bounded in a wedge with apex angle 0 < ex ~ n. The strength of geometric singularity
in a wedge with angle n< ex ~ 2n is

n
A=I-et.

which is identical with the geometric singularity of case lb. For et. = 2n, the wedge resembles
a circular shaft with a radial crack under antiplane shear stresses on the crack faces, and
the stress fields exhibit the familiar square root singularity.

In a wedge with infinite radius the displacement and stress fields may be obtained by
taking the limit of (35)-(38) as a ~ 00. Here, the displacement component is merely
mentioned.

P' 1 (r )~[ (hlh2)~] (knB)W(r,B) = -- L -- - 1+(-1/+ 1
-, cos-fl k~ 1 kn h2 1'- ex

P J I (h')~[. (h1)~] (knB)W(r,B) = -- L - ~ l+(_l)k+l - cos-fl k ~ I kn I h2 ex (39)

PROBLEM II

Basically the analysis of problem II parallels that of Problem I. Therefore, the analysis
has been made brief in this problem. In the sequel, three foregoing cases of boundary data
on the radial edges of the wedge are taken into account.

Case Ila-traction-displacement
The boundary data on the radial edges are denoted by (13). The application of these

conditions with the aid of the second of (1) on (12) with} = I, results in

From the inversion formula (6) with} = I and (40), we have

P fC + iX sin (SB) ..
W(r,O) = - --. (a 2Sh-s - hS)r- S ds.2nfl/ C-ix Scos (Sex)

(40)

(41 )

The condition (8) dictates that the strip of regularity be analogous to that of case la and
the contour integration follows the same line of calculations

P ~. k 2 [ (h)(2k.:1 1n](r)(2k;,]Jn. (2k+ l)nB)
W(r. B) = - 1 (- 1) 1- - - Sill. flk-;O (2k+l)n a h 2et.

. P k 2 l (r)(2k:~](h)(2\+,I1". (2k+ l)nB)
Wlr, B) = - L (- 1) ."-_.- 1- - - Sill

flk~O (2k+ I)n a I' 2ex

r~h

I' ~ h. (42)

The substitution of (42) into constitutive relationships, (1), gives the stress fields
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P x k+ll (h)(2k:1 JJr](r)12k:lIJr_ I . ((2k+l)n8)
Trz (r,8) = hak~O (-I) 1- ~ h SIn 2a

px l (h)12k:I IIT](r)(2k;,IJIT_ 1 ((2k+l)n8)
T&zCr,8)=haJo(-I)k+l 1- ~ h cos 2a

r'S.h

(43)

Turning our attention to a wedge with infinite radius, it is obvious that since at infinity
the displacement and stress fields tend to zero, this case should convert to case la. To verify
the statement we may easily let a -> 00 in (42) and reproduce (20).

Case IIb-displacement-displacement
In a manner similar to case Ib, we take the Mellin transform of the first kind of

boundary data (21) and use the results to compute the coefficients in (12) with j = I. The
Mellin transform of displacement is then

2Sa,,+2 sin (S8)
Wf(S,8) = -0-- . (S)'

n- _S2 SIn ,a

Applying the inversion formula, (6), to this equation gives

- an iC+','x, (a)S S sin (S8)W(r,8) =~. - , ds.
m C-'x; r (n 2 -S") sin (Sa)

(44)

(45)

The above integration in a wedge with angle ct =F mn/n (m has integral values) is carried
out by employing the contour of integration indicated in case lb. The displacement field
becomes

(46)

By inserting (27) into (46), it can be shown that the boundary data, (4), is satisfied. The
stress fields from (I) yield

(47)
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When ct, = mn!n, the integrand in (45) has a double pole at S = -mn/ct,. Carrying out the
contour integration, we get

[(-I)In>:rr)+ I (1')" II (a) IIIW(r, e) = 2an --ict,-- ~ In; - 2n sin (ne) - e cos (ne)

We should note that setting I' = a in the first of (29) and in (48), results in

W(a, e) = (a/f.1)T rz (a, e). (49)

Consequently, we may use Fig. (2) to argue that the boundary condition, (4), is satisfied.
The constitutive eqns (I) and displacement solution (48) give the stress fields

2a
n

-
1 (-I)',,:rrn(r)n-Ill (I') 3J JTrc(r, e) = ~-f.1 --2- ~ In ~ + 2n sin(ne)+ecos(ne)

. (kne)]krr SIn-

+ f (_I)k+
1
en

2
(,,-)~-l ct,

k~1 ct,2 a 2 (kn)2n - -
,ct,

k#m

(- l)"x:nn(r)n. c 1[[ (r) 3 J J2 ~ In ~ + 2n cos (ne) - esin (ne)

(50)

Case IIe-traction-traction
Taking the MeIlin transforms of first kind of the second of (I), we have

(51 )

Similar to case Ic, applying the boundary conditions, (30), with the aid of (51) on (12)
where j = I, yields
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Wf(S,8) = - ; {(a 2Sh2 S
- hi) sin (S8)

(52)

From (6) and (52) after eliminating the analytic terms, we have

P fC
+

iCC
C oc S S' 25 S S' cos (S8)W(r,8) = - ~'. r "[(a~dh':;- -h ) cos (Set.) - (a h- -h )] dS

27flJ1. C-ix "2 . lIS sin (Set.) .

(53)

The condition (8) makes it necessary that the strip of regularity be the same as that in case
Ie. Moreover, the same contour of integration should be used. Performing the contour
integration, the displacement in the whole region yields

2kn kn

W(r,8) = - ~ktl ~n [( _l)k+' [1- (h~ )~J(:J;-

+ [1- C:)2:nJC:J~}os (~:8) r ~ hI

W(r,8) = - ~ktl ~n [(-I)kG)~ C~)~+ (:J~ (1- (; )2~rr)

P x I[(r)~[ k(hl)~ (h?)~JW(r,8) = - - L - - (-I) - - ~
J1.k~1 kn a a a

[
k+ I (hl)~ (h2)~JJ (kn8)+ (- 1) - + - cos ~

r r et.

Substitution of (54) into (l) leads to the stress fields

(54)

+ (~:)(;j'c ')[,- (h:fJJeos (k:O) ,<> h,
(kn ) 2kn

Toz (r,8) = h~et.ktl [(-I)k+l(:J -;--1 [l-C~)~J

+G;)(;,f')[,-e:fJ}n C:O) '<> h,
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(h)~+lJ (kn8)+ (_l)k+ I --;-' COS----;-
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(55)

+ (~:) CrZ)~ + 1]cos (k:8) r~ hz

r8z(r,8) = h~aJl [( _l)k (~)~-l C~l )~+l_(~)~_l C:)~(;)+ (~z )~~I (~~)

+(- V + I Cr1
) ~ + I ]sin (k:8)

In a wedge with infinite radius, by the reasoning stated in case IIa, the displacement field
should be the same as that of case Ic. Taking the limit as a ---'> Xi in (54), we obtain (39).

The discussions regarding the behavior of displacement and stress fields in the neigh
borhood of the point of application of traction and the singularities of stress fields in different
cases of problem II are the same as those in the corresponding cases of problem I.

CONCLUSIONS

The stress analysis of a finite wedge under antiplane shear deformation has been
investigated in this paper. The finite Mellin transform is employed to solve the governing
differential equation. The boundary data on the circular arc in problem I is traction free
and in problem 11 is the zero displacement component. All possible boundary conditions on
the radial edges are taken into account. These cases are traction-displacement, displacement
displacement and traction-traction. Exact closed form solution for each above-mentioned
case is obtained for displacement and stress fields. The effects of apex angle upon strength
of singularity of stress fields in each case have been discussed. For the special case of a
wedge with infinite radius, the results of the two problems are identical.
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